Biochemistry / Bioinformatics


Biochemistry and bioinformatics in society

One of the greatest powers of research is harnessing symbiotic relationships among different fields, and biological research is no exception. With the growth of bioinformatics, a field dedicated to developing computational methods for biology, collecting extremely large datasets has become easier and more widespread. As a result, biochemical methods are increasingly informed by these datasets, and in turn, the complexity of biochemical systems provides an excellent source of material for bioinformatic analysis. Our group "Biochemistry and Bioinformatics in Society" is interested in exploring this interface between biochemistry and bioinformatics. Specifically, we will be sharing insights into the impact that discoveries from this interface have on various aspects of society, such as policy and healthcare/medicine.

Designing Drugs

A new approach to developing kinase inhibitors.

Anna
Cunningham
Headshot of Anna Cunningham
Featured Article Image

Kinase inhibitors are one of the most common types of prescription drugs, but developing them is difficult and expensive. Using a new method, kinase inhibitors can be designed quickly and easily just by knowing the protein sequence!

Breast Cancer - One Diagnosis, Many Different Diseases?

How unsupervised analysis of gene expression in tumors has guided personalized treatments for breast cancer patients.

Melissa KoHeadshot of Melissa Ko
Featured Article Image

Breast cancer is the most common cancer in women and about a quarter of a million new cases of breast cancer will be diagnosed this year. For many years previously, patients with breast cancer have been prescribed essentially the same blanket treatment for their cancer. However, “breast cancer” itself is not just one disease; patients who are diagnosed with breast cancer may have tumors that differ in many significant ways, including amount of aggression and sensitivity to drug treatments.

Scientists restricting their own research: the historical Asilomar meeting

With great scientific power comes the great responsibility of self-regulation.

Keyla
M.
Badillo
Headshot of Keyla M. Badillo
Featured Article Image

Forty years ago, at the birth of gene-editing technology, 140 brilliant scientists from all over the world met at Asilomar to discuss its usage. Now that they could join pieces of DNA in artificial ways, what should they do with it? What are the experiments they need to answer relevant questions? And more importantly, are those experiments safe and responsible? After 3 long days of intense discussion, scientists showed the public that they could self-regulate and set a precedent for scientific regulation.

Genetically modified food and you!

Distinguishing fact from fiction surrounding the health and safety of genetically modified food.

Jeremy WorkHeadshot of Jeremy Work
Featured Article Image

Genetic modification has allowed us to make better crops and food, yet the majority of the public is skeptical of the safety and quality of genetically modified food. Are these opinions founded, or can we mass dispel the myths surrounding these new efficient crops?